Rating of perceived exertion and acute mountain sickness during a high-altitude trek.

Copeptin and arginine vasopressin at high altitude: relationship to plasma osmolality and perceived exertion.

Comparison of two methods of assessing total body water at sea level and increasing high altitude.

The effects of exercise at high altitude on high-sensitivity cardiac troponin release and associated biventricular cardiac function.

Neutrophil gelatinase-associated lipocalin: its response to hypoxia and association with acute mountain sickness.

Brain natriuretic peptide and NT-proBNP levels reflect pulmonary artery systolic pressure in trekkers at high altitude.

Cardiac biomarkers and high altitude pulmonary edema.

The cortisol response to hypobaric hypoxia at rest and post-exercise.

The effects of prolonged acute hypobaric hypoxia on novel measures of biventricular performance.

The effects of acute hypobaric hypoxia on arterial stiffness and endothelial function and its relationship to changes in pulmonary artery pressure and left ventricular diastolic function.

Severe acute mountain sickness, brain natriuretic peptide and NT-proBNP in humans.

Research in the Mountains, Presentation at AAGBI WSM, Jan 2011.

Effects of altitude exposure on brain natriuretic peptide in humans.
Brain natriuretic peptide and acute hypobaric hypoxia in humans.

Brain natriuretic peptide shows no response to acute hypobaric hypoxia in humans.


Resting and exercising cardiorespiratory variables and acute mountain sickness.
TJ Hooper, DZH Levett, AJ Mellor, MPW Grocott. Journal Royal Naval Medical Service 2010

Mountains, Medicine and Managers, presentation at Royal Society of Medicine, London, Mar 2008